Interface PMatrix

All Known Implementing Classes:
PMatrix2D, PMatrix3D

public interface PMatrix
A matrix is used to define graphical transformations. PMatrix is the common interface for both the 2D and 3D matrix classes in Processing. A matrix is a grid of numbers, which can be multiplied by a vector to give another vector. Multiplying a point by a particular matrix might translate it, rotate it, or carry out a combination of transformations. Multiplying matrices by each other combines their effects; use the apply and preApply methods for this.
  • Method Summary

    Modifier and Type
    Method
    Description
    void
    apply(float n00, float n01, float n02, float n10, float n11, float n12)
    Multiply this matrix by another.
    void
    apply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33)
    Multiply this matrix by another.
    void
    apply(PMatrix source)
    Multiply this matrix by another.
    void
    apply(PMatrix2D source)
    Multiply this matrix by another.
    void
    apply(PMatrix3D source)
    Multiply this matrix by another.
    float
     
    get()
    Returns a copy of this PMatrix.
    float[]
    get(float[] target)
    Copies the matrix contents into a float array.
    boolean
    Invert this matrix.
    float[]
    mult(float[] source, float[] target)
    Multiply a multi-element vector against this matrix.
    mult(PVector source, PVector target)
    Multiply source by this matrix, and return the result.
    void
    preApply(float n00, float n01, float n02, float n10, float n11, float n12)
    Apply another matrix to the left of this one.
    void
    preApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33)
    Apply another matrix to the left of this one.
    void
    Apply another matrix to the left of this one.
    void
    Apply another matrix to the left of this one.
    void
    Apply another matrix to the left of this one.
    void
    Make this an identity matrix.
    void
    rotate(float angle)
     
    void
    rotate(float angle, float v0, float v1, float v2)
     
    void
    rotateX(float angle)
     
    void
    rotateY(float angle)
     
    void
    rotateZ(float angle)
     
    void
    scale(float s)
     
    void
    scale(float sx, float sy)
     
    void
    scale(float x, float y, float z)
     
    void
    set(float[] source)
    Set the contents of this matrix to the contents of source.
    void
    set(float m00, float m01, float m02, float m10, float m11, float m12)
    Set the matrix content to this 2D matrix or its 3D equivalent.
    void
    set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
    Set the matrix content to the 3D matrix supplied, if this matrix is 3D.
    void
    set(PMatrix src)
    Make this matrix become a copy of src.
    void
    shearX(float angle)
     
    void
    shearY(float angle)
     
    void
    translate(float tx, float ty)
     
    void
    translate(float tx, float ty, float tz)
     
    void
    Transpose this matrix; rows become columns and columns rows.
  • Method Details

    • reset

      void reset()
      Make this an identity matrix. Multiplying by it will have no effect.
    • get

      PMatrix get()
      Returns a copy of this PMatrix.
    • get

      float[] get(float[] target)
      Copies the matrix contents into a float array. If target is null (or not the correct size), a new array will be created.
    • set

      void set(PMatrix src)
      Make this matrix become a copy of src.
    • set

      void set(float[] source)
      Set the contents of this matrix to the contents of source. Fills the matrix left-to-right, starting in the top row.
    • set

      void set(float m00, float m01, float m02, float m10, float m11, float m12)
      Set the matrix content to this 2D matrix or its 3D equivalent.
    • set

      void set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
      Set the matrix content to the 3D matrix supplied, if this matrix is 3D.
    • translate

      void translate(float tx, float ty)
    • translate

      void translate(float tx, float ty, float tz)
    • rotate

      void rotate(float angle)
    • rotateX

      void rotateX(float angle)
    • rotateY

      void rotateY(float angle)
    • rotateZ

      void rotateZ(float angle)
    • rotate

      void rotate(float angle, float v0, float v1, float v2)
    • scale

      void scale(float s)
    • scale

      void scale(float sx, float sy)
    • scale

      void scale(float x, float y, float z)
    • shearX

      void shearX(float angle)
    • shearY

      void shearY(float angle)
    • apply

      void apply(PMatrix source)
      Multiply this matrix by another.
    • apply

      void apply(PMatrix2D source)
      Multiply this matrix by another.
    • apply

      void apply(PMatrix3D source)
      Multiply this matrix by another.
    • apply

      void apply(float n00, float n01, float n02, float n10, float n11, float n12)
      Multiply this matrix by another.
    • apply

      void apply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33)
      Multiply this matrix by another.
    • preApply

      void preApply(PMatrix left)
      Apply another matrix to the left of this one.
    • preApply

      void preApply(PMatrix2D left)
      Apply another matrix to the left of this one.
    • preApply

      void preApply(PMatrix3D left)
      Apply another matrix to the left of this one. 3D only.
    • preApply

      void preApply(float n00, float n01, float n02, float n10, float n11, float n12)
      Apply another matrix to the left of this one.
    • preApply

      void preApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33)
      Apply another matrix to the left of this one. 3D only.
    • mult

      PVector mult(PVector source, PVector target)
      Multiply source by this matrix, and return the result. The result will be stored in target if target is non-null, and target will then be the matrix returned. This improves performance if you reuse target, so it's recommended if you call this many times in draw().
    • mult

      float[] mult(float[] source, float[] target)
      Multiply a multi-element vector against this matrix. Supplying and recycling a target array improves performance, so it's recommended if you call this many times in draw().
    • transpose

      void transpose()
      Transpose this matrix; rows become columns and columns rows.
    • invert

      boolean invert()
      Invert this matrix. Will not necessarily succeed, because some matrices map more than one point to the same image point, and so are irreversible.
      Returns:
      true if successful
    • determinant

      float determinant()
      Returns:
      the determinant of the matrix