Package processing.core
Class PMatrix2D
java.lang.Object
processing.core.PMatrix2D
- All Implemented Interfaces:
PMatrix
3x2 affine matrix implementation.
Matrices are used to describe a transformation; see
PMatrix
for a
general description. This matrix looks like the following when multiplying
a vector (x, y) in mult()
.
[m00 m01 m02][x] [m00*x + m01*y + m02*1] [x'] [m10 m11 m12][y] = [m10*x + m11*y + m12*1] = [y'] [ 0 0 1 ][1] [ 0*x + 0*y + 1*1 ] [ 1](x', y') is returned. The values in the matrix determine the transformation. They are modified by the various transformation functions.
-
Field Summary
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionvoid
apply
(float n00, float n01, float n02, float n10, float n11, float n12) Multiply this matrix by another.void
apply
(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) Unavailable in 2D.void
Multiply this matrix by another.void
Multiply this matrix by another.void
Unavailable in 2D.float
get()
Returns a copy of this PMatrix.float[]
get
(float[] target) Copies the matrix contents into a 6 entry float array.boolean
invert()
Invert this matrix.float[]
mult
(float[] vec, float[] out) Multiply a two element vector against this matrix.Multiply source by this matrix, and return the result.float
multX
(float x, float y) Returns the x-coordinate of the result of multiplying the point (x, y) by this matrix.float
multY
(float x, float y) Returns the y-coordinate of the result of multiplying the point (x, y) by this matrix.void
preApply
(float n00, float n01, float n02, float n10, float n11, float n12) Apply another matrix to the left of this one.void
preApply
(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) Unavailable in 2D.void
Apply another matrix to the left of this one.void
Apply another matrix to the left of this one.void
Unavailable in 2D.void
print()
void
reset()
Make this an identity matrix.void
rotate
(float angle) void
rotate
(float angle, float v0, float v1, float v2) Unavailable in 2D.void
rotateX
(float angle) Unavailable in 2D.void
rotateY
(float angle) Unavailable in 2D.void
rotateZ
(float angle) void
scale
(float s) void
scale
(float sx, float sy) void
scale
(float x, float y, float z) Unavailable in 2D.void
set
(float[] source) Set the contents of this matrix to the contents of source.void
set
(float m00, float m01, float m02, float m10, float m11, float m12) Sets the matrix content.void
set
(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) Unavailable in 2D.void
If matrix is a PMatrix2D, sets this matrix to be a copy of it.void
Unavailable in 2D.void
shearX
(float angle) void
shearY
(float angle) void
translate
(float tx, float ty) void
translate
(float x, float y, float z) Unavailable in 2D.void
Unavailable in 2D.
-
Field Details
-
m00
public float m00 -
m01
public float m01 -
m02
public float m02 -
m10
public float m10 -
m11
public float m11 -
m12
public float m12
-
-
Constructor Details
-
PMatrix2D
public PMatrix2D()Create a new matrix, set to the identity matrix. -
PMatrix2D
public PMatrix2D(float m00, float m01, float m02, float m10, float m11, float m12) -
PMatrix2D
-
-
Method Details
-
reset
public void reset()Description copied from interface:PMatrix
Make this an identity matrix. Multiplying by it will have no effect. -
get
Returns a copy of this PMatrix. -
get
public float[] get(float[] target) Copies the matrix contents into a 6 entry float array. If target is null (or not the correct size), a new array will be created. Returned in the order{m00, m01, m02, m10, m11, m12}
. -
set
If matrix is a PMatrix2D, sets this matrix to be a copy of it.- Specified by:
set
in interfacePMatrix
- Throws:
IllegalArgumentException
- If matrix is not 2D.
-
set
Unavailable in 2D. Does nothing. -
set
public void set(float[] source) Description copied from interface:PMatrix
Set the contents of this matrix to the contents of source. Fills the matrix left-to-right, starting in the top row. -
set
public void set(float m00, float m01, float m02, float m10, float m11, float m12) Sets the matrix content. -
set
public void set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) Unavailable in 2D. Does nothing. -
translate
public void translate(float tx, float ty) -
translate
public void translate(float x, float y, float z) Unavailable in 2D.- Specified by:
translate
in interfacePMatrix
- Throws:
IllegalArgumentException
-
rotate
public void rotate(float angle) -
rotateX
public void rotateX(float angle) Unavailable in 2D.- Specified by:
rotateX
in interfacePMatrix
- Throws:
IllegalArgumentException
-
rotateY
public void rotateY(float angle) Unavailable in 2D.- Specified by:
rotateY
in interfacePMatrix
- Throws:
IllegalArgumentException
-
rotateZ
public void rotateZ(float angle) -
rotate
public void rotate(float angle, float v0, float v1, float v2) Unavailable in 2D.- Specified by:
rotate
in interfacePMatrix
- Throws:
IllegalArgumentException
-
scale
public void scale(float s) -
scale
public void scale(float sx, float sy) -
scale
public void scale(float x, float y, float z) Unavailable in 2D.- Specified by:
scale
in interfacePMatrix
- Throws:
IllegalArgumentException
-
shearX
public void shearX(float angle) -
shearY
public void shearY(float angle) -
apply
Description copied from interface:PMatrix
Multiply this matrix by another. -
apply
Description copied from interface:PMatrix
Multiply this matrix by another. -
apply
Unavailable in 2D.- Specified by:
apply
in interfacePMatrix
- Throws:
IllegalArgumentException
-
apply
public void apply(float n00, float n01, float n02, float n10, float n11, float n12) Description copied from interface:PMatrix
Multiply this matrix by another. -
apply
public void apply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) Unavailable in 2D.- Specified by:
apply
in interfacePMatrix
- Throws:
IllegalArgumentException
-
preApply
Apply another matrix to the left of this one. -
preApply
Description copied from interface:PMatrix
Apply another matrix to the left of this one. -
preApply
Unavailable in 2D.- Specified by:
preApply
in interfacePMatrix
- Throws:
IllegalArgumentException
-
preApply
public void preApply(float n00, float n01, float n02, float n10, float n11, float n12) Description copied from interface:PMatrix
Apply another matrix to the left of this one. -
preApply
public void preApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) Unavailable in 2D.- Specified by:
preApply
in interfacePMatrix
- Throws:
IllegalArgumentException
-
mult
Multiply source by this matrix, and return the result. The result will be stored in target if target is non-null, and target will then be the matrix returned. This improves performance if you reuse target, so it's recommended if you call this many times in draw(). Ignores any z component. -
mult
public float[] mult(float[] vec, float[] out) Multiply a two element vector against this matrix. If out is null or not length four, a new float array will be returned. The values for vec and out can be the same (though that's less efficient). -
multX
public float multX(float x, float y) Returns the x-coordinate of the result of multiplying the point (x, y) by this matrix. -
multY
public float multY(float x, float y) Returns the y-coordinate of the result of multiplying the point (x, y) by this matrix. -
transpose
public void transpose()Unavailable in 2D. Does nothing. -
invert
public boolean invert()Description copied from interface:PMatrix
Invert this matrix. Will not necessarily succeed, because some matrices map more than one point to the same image point, and so are irreversible. -
determinant
public float determinant()- Specified by:
determinant
in interfacePMatrix
- Returns:
- the determinant of the matrix
-
print
public void print()
-